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Introduction
• The wavelet transform is an important new signal processing tool that

is revolutionizing the analysis of signals such as the ERP and the EEG.
Its most salient aspect is the replacement of frequency by scaling either
in time (one-dimensional) or in space (two-dimensional). These
correspond, respectively, to time-series analysis and to image
processing. As a result, the bandwidth is proportional to frequency.

• This feature, which is common to most real broadband signals, makes
wavelets particularly suitable for the analysis of transients or brief
changes in the signal.  This also contrasts with the Fourier transform,
which has a fixed bandwidth at all frequencies.

• The purpose of this research was to determine the extent to which
wavelet transforms of ERPs discriminate between high- and low signal
detection and classification performance over periods of about 30 s.



 

Methods
• Subjects

Eight experienced male technicians with occupational experience
in monitoring electronic displays (ages 18 to 43y).   All subjects had
normal or corrected vision.

• Task
The task was presented on a radar-like display (Figure 1).

Subjects pressed "T" or "NT" buttons to detect targets and nontargets,
and rated their confidence in each detection response on a 3-point scale
using a mouse. Task-relevant stimuli were triangles, with or without
central dots, presented for  50 ms at three signal-to-noise ratios.   The
intertrial interval varied between 2.5 and 3.0 s.  Each subject was
trained to a stable level of performance on the task.



 

• Testing procedure
The task was performed in two  sessions spaced one week apart.

In each session, about  10 blocks of 50-72 trials each were performed.
The first block was a baseline run, in which ERPs were recorded but
no responses were allowed.   Subsequent blocks contained stimuli of
varying  S/N ratios. Mapping between stimuli and responses changed
with each new block to enforce controlled processing.

• ERP recording
ERPs were recorded from electrodes Fz, Cz, and Pz, referred to

averaged mastoids.  EOGs were also  recorded and artifacts were
corrected off line.   Visual fixation was monitored and controlled with
an  infrared eye tracker.



 

Results
• Sample average ERP data for five subjects appear in Figures 2-4.

Averages were computed separately for high- and low performance
(median split) blocks of trials.  Performance was defined as a linear
composite of speed, accuracy, and confidence measures using the
formula described by Trejo, Kramer, & Arnold (1995):

• The ERP averages of 7 to 10 consecutive artifact-free ERPs were
created using running means and a corresponding series of the running
mean for the PF1 measure.  Both series were median-split to form low-
and high-PF1 samples.  We computed the discrete wavelet transform
for each of the block-averaged ERPs using the Daubechies D4 wavelet
(Daubechies, 1992). The high/low average DWTs for one subject
appear in Figures 5-7.

PF accuracy confidence reaction time1 33 53 51= + − .       . . .



 

•  The  ERP block averages also served as the input matrix for a
covariance-based, mean-centered PCA.  For each subject, six factors
were retained and rotated using the varimax method.  Factor scores
were computed for each sample (low- and high PF1).  Figure 8 shows
an example of the factor loadings for one subject (S2).  The best three
factors were retained and combined for classifications.

• Classification method.  Block averages of n=1, 2, 4, ..., 64 blocks were
created by drawing 1000 random sub-samples of size n from each of
the samples.   Each block average was classified by its multivariate
Euclidean distance from the mean vector for the high or low PF1
samples (Figures 9 & 10).

• A Kruskal-Wallis rank sum test was used to test the difference in the
number of blocks averaged required to correctly classify a block
average with 70% or 90% accuracy.  For both accuracy levels, the
DWT required significantly fewer blocks than the PCA (70%:
c2(1)=8.98, p=.003; 90%: c2(1)=9.78, p=.002, Figure 11).



 

Conclusions

1.   As compared to PCA scores, the DWT transform of short-term ERP
averages provided for better classification of performance states in a
signal detection and classification task.  In  eight of eight subjects, the
DWT classification functions exceeded the PCA functions at all
averaging levels.  At the two levels tested, 70% and 90%, the DWT
required fewer trials to correctly classify ERP averages than the PCA.

2.  The average number of blocks required to correctly classify 70% of the
averages was 1.6 for the DWT.  This corresponds to a time on task of
48 seconds.  Thus a DWT-based algorithm may provide for on-line
ERP-based assessment of human performance.  Such measurements
could provide for analysis of dynamic changes in task performance in
experimental or applied settings.


